A Mixed Finite Element Formulation for Incompressibility using Linear Displacement and Pressure Interpolations

نویسندگان

  • D. Christ
  • M. Cervera
  • M. Chiumenti
  • C. Agelet de Saracibar
چکیده

In this work shall be presented a stabilized finite element method to deal with incompressibility in solid mechanics. A mixed formulation involving pressure and displacement fields is used and a continuous linear interpolation is considered for both fields. To overcome the Ladyzhenskaya-Babuška-Brezzi condition, a stabilization technique based on the orthogonal sub-grid scale method is introduced. The main advantage of the method is the possibility of using linear triangular finite elements, which are easy to generate for real industrial applications. Results are compared with several improved formulations, as the enhanced assumed strain method (EAS) and the Q1P0-formulation, in nearly incompressible problems and in the context of linear elasticity and J2-plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

A mixed three-eld FE formulation for stress accurate analysis including the incompressible limit

In previous works, the authors have presented the stabilized mixed displacement/pressure formulation to deal with the incompressibility constraint. More recently, the authors have derived stable mixed stress/displ-acement formulations using linear/linear interpolations to enhance stress accuracy in both linear and non-linear problems. In both cases, the Variational Multi Scale (VMS) stabilizati...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Analysis of rubber-like materials using meshless local Petrov-Galerkin (MLPG) method

Large deformations of rubber-like materials are analyzed by the meshless local Petrov–Galerkin (MLPG) method. The method does not require shadow elements or a background mesh and therefore avoids mesh distortion difficulties in large deformation problems. Basis functions for approximating the trial solution and test functions are generated by the moving least-squares (MLS) method. A local mixed...

متن کامل

Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part III: Compressible and incompressible plasticity

This paper presents the application of a stabilized mixed strain/displacement …nite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the stan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003